Why we’re building it. Why it matters. Why join the waitlist now. Over the last year, AI prototyping has become incredibly fast. But one thing hasn’t improved at the same pace: production. Teams can build impressive demos in hours… and then spend weeks trying to make them stable,
When organizations consider adopting AI, they often picture complex initiatives: process automation, multi-system integrations, end-to-end orchestration, or full workflow redesigns. Yet the projects that create the strongest initial momentum — and the highest level of internal trust — are usually the simplest. Deploying a RAG engine to make regulatory documents searchable and
Au cours des derniers mois, nous avons accompagné plusieurs organisations dans l’implémentation concrète de solutions fondées sur l’intelligence artificielle. Ces projets, menés dans des contextes variés (industrie, agriculture, services, énergie, finance…), ont renforcé notre conviction : pour réussir, l’IA doit être introduite avec méthode, clarté et exigence technique.
Context. In highly regulated sectors (banking/insurance, healthcare, energy, pharma, public services), it’s tempting to “plug in a RAG” so a LLM can answer from internal documentation. Poorly framed, results disappoint: inaccurate answers, compliance risks, unpredictable latency, low adoption. Built correctly, RAG becomes a verifiable knowledge system that shortens